Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
authorea preprints; 2023.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.168533832.23499167.v1

ABSTRACT

In Mexico, the BA.4 and BA.5 Omicron variants dominated the fifth epidemic wave (summer 2022), superseding BA.2, which had circulated during the inter-wave period. The present study uses genome sequencing and statistical and phylogenetic analyses to examine these variants’ prevalence, distribution, and genetic diversity in Mexico from April to August 2022. Over 35% of the sequenced genomes in this period corresponded to the BA.2 variant, 8% to the BA.4, and 56% to the BA.5 variant. Multiple subvariants were identified, but only BA.2.9, BA.2.12.1, BA.5.1, BA.5.2, BA.5.2.1, and BA.4.1 circulated throughout the fifth wave across the entire country, not forming geographical clusters. Contrastingly, other subvariants exhibited a geographically restricted distribution, most notably in the Southeast region, which showed a distinct subvariant dynamic. This study supports previous results showing that this region may be a major entry point and may have contributed to the introduction and evolution of novel variants in Mexico. Furthermore, a differential distribution was observed for certain subvariants among specific States throughout time, which may have contributed to the overall increased diversity observed during this wave compared to the previous one. This study highlights the importance of sustaining genomic surveillance to identify novel variants that may impact public health.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.18.512746

ABSTRACT

The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In Mexico, this subvariant began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in the country. Unlike previous SARS-CoV-2 variants, BA.1 did not acquire local substitutions nor exhibited a geographically distinct circulation pattern in Mexico. However, a regional difference in the speed of the replacement of the Delta variant was observed, as some northern states showed persistence of Delta lineages well into February 2022. Mexican states were divided into four regions (North, Central North, Central South, and Southeast) based on the lineage circulation before the dominance of BA.1 to study possible causes for this difference. For each region, the time to fixation of BA.1, the diversity of Delta sublineages in the weeks preceding BA.1 entry, the population density, and the level of virus circulation during the inter-wave interval were determined. An association between a faster Omicron spread and lower Delta diversity, as well as fewer COVID-19 cases during the Delta-BA.1.x inter-wave period, was observed. For example, the North region exhibited the slowest spread but had the highest diversity of Delta sublineages and the greatest number of inter-wave cases relative to the maximum amount of the virus circulating in the region, whereas the Southeast region showed the opposite. Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics. Nonetheless, if there is a significant difference in the fitness of the variants or the time allowed for the competition is sufficient, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico. Impact statementThe surveillance of lineage circulation of SARS-CoV-2 has helped identify variants that have a transmission advantage and are of concern to public health and to track the virus dispersion accurately. However, many factors contributing to differences in lineage spread dynamics beyond the acquisition of specific mutations remain poorly understood. In this work, a description of BA.1 entry and dispersion within Mexico is presented, and which factors potentially affected the spread rates of the Omicron variant BA.1 among geographical regions in the country are analyzed, underlining the importance of population density, the proportion of active cases, and viral lineage diversity and identity before the entry of BA.1. Data summaryThis work was carried out using data shared through the GISAID initiative. All sequences and metadate are available through GISAID with the accession EPI_SET_220927gw, accession numbers and metadata are also reported in the supplemental material of this article. Epidemiological data was obtained though the Secretaria de Salud website (https://www.gob.mx/salud/documentos/datos-abiertos-152127),


Subject(s)
COVID-19 , Gerstmann Syndrome
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1831627.v1

ABSTRACT

Up to November 2021, over 200 different SARS-CoV-2 lineages circulated in Mexico. To investigate lineage replacement dynamics, we applied a phylodynamic approach to explore the evolutionary trajectories of five dominant lineages that circulated during the first year of the local epidemic. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in the country. Lineages B.1.1.222 and B.1.1.519 showed comparable dynamics, represented by clades likely originating in Mexico and persisting for over a year. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. We further explored viral movements across the country, applied within the largest clades identified (belonging to lineage B.1.617.2). Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.05.498834

ABSTRACT

Up to November 2021, over 200 different SARS-CoV-2 lineages circulated in Mexico. To investigate lineage replacement dynamics, we applied a phylodynamic approach to explore the evolutionary trajectories of five dominant lineages that circulated during the first year of the local epidemic. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in the country. Lineages B.1.1.222 and B.1.1.519 showed comparable dynamics, represented by clades likely originating in Mexico and persisting for over a year. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. We further explored viral movements across the country, applied within the largest clades identified (belonging to lineage B.1.617.2). Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.

5.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202205.0131.v1

ABSTRACT

In this study, we analyzed sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which completely replaced other previously circulating variants in the country due to its transmission advantage. Among Delta sublineages detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these sublineages only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described, and phylogenetic analyses and haplotype networks were used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the principal sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variants associated to the third wave of the COVID-19 pandemic in Mexico and reinforces the importance of SARS-CoV-2 genomic surveillance for timely identification of emerging variants that may impact public health.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.170324

ABSTRACT

As part of any plan to lift or ease the confinement restrictions that are in place in many different countries, there is an urgent need to increase the capacity of laboratory testing for SARS CoV-2. Detection of the viral genome through RT-qPCR is the golden standard for this test, however, the high demand of the materials and reagents needed to sample individuals, purify the viral RNA, and perform the RT-qPCR test has resulted in a worldwide shortage of several of these supplies. Here, we show that directly lysed saliva samples can serve as a suitable source for viral RNA detection that is cheaper and can be as efficient as the classical protocol that involves column purification of the viral RNA. In addition, it surpasses the need for swab sampling, decreases the risk of the healthcare personnel involved in this process, and accelerates the diagnostic procedure.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.27.120402

ABSTRACT

The COVID-19 pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to implement effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, the SARS-CoV-2 lineage A/G, containing mostly sequences from North America, and the lineage B/S containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized fourteen independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represent local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described in the country. Within this Mexican cluster, we also identified an H49Y amino acid change in the spike protein. This mutation is a homoplasy occurring independently through time and space, and may function as a molecular marker to follow on any further spread of these viral variants throughout the country. Our results depict the general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts. This work is the result of the collaboration of five institutions into one research consortium: three public health institutes and two universities. From the beginning of this work, it was agreed that the experimental leader of each institution would share the first authorship. Those were the criteria followed to assign first co-first authorship in this manuscript. The order of the other authors was randomly assigned. IMPORTANCEUnderstanding the introduction, spread and establishment of SARS-CoV-2 within distinct human populations is crucial to implement effective control strategies as well as the evolution of the pandemics. In this work, we describe that the initial virus strains introduced in Mexico came from Europe and the United States and the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains having the mutation H49Y in the Spike protein, that could be further used as a molecular marker to follow viral spread within the country and the region.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL